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Modeling and Control of State-Affine

Probabilistic Systems for Atomic-Scale Dynamics

Grant number: FA9550-04-1-0183

Martha A. Gallivan

School of Chemical & Biomolecular Engineering

Georgia Institute of Technology

ABSTRACT

Under this research grant, the framework and tools were developed for model reduction of

atomic-scale many body systems. The state-affine mathematical structure of the original and

reduced-order models enabled the implementation of control through dynamic programming and

estimation through an extended Kalman filter. In the framework developed here, the state of the

high-dimensional stochastic system is first quantified using a high-dimensional pair correlation

function. This state is then reduced using linear and nonlinear principal component analysis and

is discretized using self-organizing maps. To create the dynamic model, a cell map is

constructed using short simulations to quantify input-dependent transitions between the discrete

states. The error associated with the model reduction was quantified and analyzed, and a method

for predicting this error was proposed.

Specific applications in materials processing were considered, which motivated and guided the

development of the model reduction framework and tools. A model of gallium arsenide

deposition was used to demonstrate the model reduction framework. A second modeling study

in the molecular architecture of hyperbranched polymers was performed, and enabled a

comparison of common themes and system specific features between the two different

applications.
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I. OBJECTIVES AND SIGNIFICANCE

The goal of this research program was to develop a systematic control methodology for state-

affine probabilistic systems. This class of systems represents local interactions among a large

number of discrete particles, and is particularly important for dynamics at the nanometer scale,

where the interactions among many atoms, molecules, or spins require a probabilistic

description. Stochastic realizations may be performed using Monte Carlo simulations, but it is

difficult to use them directly in standard algorithms for dynamic optimization and controller

design. The three main objectives of this research program, as articulated in the original

proposal, were

1. to develop the theory underlying a model reduction idea for kinetic Monte Carlo

simulations

2. to develop systematic tools for the reduction process and for control of the reduced

models

3. to investigate the applicability of the theory and procedures in several application areas of

interest for communications, computation, and materials development.

Dynamic models based on physical principles, such as conservation of mass, momentum, and

energy, are routinely used in the design of systems and controllers. However, models of atomic

scale phenomena, which often are high dimensional, nonlinear, and stochastic, are not typically

used in design. Air Force systems demand new high performance materials and electronic

devices, and due to the myriad possible design and processing options for nanostructured

materials, models are needed to design, optimize, and control the processes. One illustrative

example is the heterostructure field effect transistor under study at the Air Force Research

Laboratory at Wright Patterson Air Force Base. Professor Gallivan spent the summer of 2006 at
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AFRL working with a team there to model the degradation dynamics of these new electronic

devices for high-speed high-power radar applications. Although these nanostructured transistors

initially perform well, they degrade over time. It is believed that the degradation and failure

modes depend strongly on the processing conditions and initial material defects. Due to the

small scales of the device, the models require a consideration of a small number of point defects

at random locations in the device.

Two additional applications were considered in this AFOSR-sponsored project. A lattice Monte

Carlo simulation of gallium arsenide surface processing was used to motivate, guide, and

demonstrate the model reduction framework developed here. Gallium arsenide is a IIl-V

compound semiconductor used in high-speed transistors, and its interface properties must be

tightly controlled in layered electronic devices such as transistors. Hyperbranched polymers are

the second application considered in this program. Their unique molecular architecture makes

them promising materials for sensors and catalysis, although the relationship between the process

inputs and the final molecular structure has not previously been well understood.

The modeling framework proposed and developed here has wide potential applicability to a

range of materials processing applications that are modeled by stochastic many body

simulations. The framework and tools draw on a range of approaches in the model reduction and

data mining disciplines. The model building approach requires significant computation, but it

can be efficiently parallelized, and the resulting reduced-order model requires minimal

computation, which is critical for real-time controller implementation. The model building

process is largely automated by the tools described here, although some user input is required to

select an appropriate pair correlation function to define the original state space. In this report,
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the modeling framework and tools are first presented, followed by a demonstration of the

modeling and control strategy, after which the applications are discussed.
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Figure 1. Reduced-order modeling framework and tools for atomic simulations.

II. SIGNIFICANT ADVANCEMENTS

The concept behind the model reduction framework is illustrated by Figure 1. The labels on the

arrows of Figure 1 give examples of tools that can be used to implement each of the steps. Some

of the concepts behind this reduction approach were previously proposed and used by Gallivan

and Murray [1]. A goal of the work supported by this grant was to propose a complete reduction

process, and to identify and demonstrate tools that could be used to automate the reduction.
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1. Quantification of the state space

A first critical step in constructing a dynamic model is to define the state space of the system,

which is a non-trivial task for an atomic-scale many body simulation. Although the state of the

stochastic simulation can be defined as the position of each atom in the system, each realization

of the stochastic simulation will be expected to yield a completely different state. However, the

control objectives for the system are based on overall statistical measures that define material

structure and properties, and this is not expected to change significantly between realizations that

are performed under the same nominal process inputs.

One way to think about this issue is to consider symmetries in the stochastic simulations.

Periodic boundary conditions are used, so translational symmetries exist. Thus, it is not the exact

position of each atom that is relevant to the state, but the relative positions of the atoms.

Furthermore, most of the atoms in the simulations are indistinguishable: in the GaAs

simulations, there are two atom types: gallium and arsenic; in the polymer simulations, there are

two types of molecules, which we refer to as A2 and B3. However, in the entire simulation

domain there are thousands or millions of each atom. Thus, the state, especially in a reduced-

order model, need not contain the exact position of each atom, but instead should include only

the relative positions of each atom type. This concept is already used in analyzing atomic scale

simulations, through the pair correlation function. It is still a high-dimensional description, but

captures the frequency of pairs of atoms as a function of their distance and/or angle. In surface

simulations, such as in the GaAs system, a height-height correlation function is often used to

quantify the simulation results, and is a pair correlation function based on the height of the

surface at different distances in x- and y-directions that define the surface. This height-height
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correlation function can in fact be computed using the Fourier transform of the surface height, so

one interpretation of a pair correlation function is in analogy to taking a Fourier transform of the

simulated surface, for the purpose of removing symmetries. In our GaAs demonstration, we

instead use a pair correlation function based on the distance between steps in the surface, which

is instead more like the Fourier transform of the derivative of the surface height. Due to the

small changes in surface height due to atomic-height steps, we found that the height-height

correlation function was extremely sensitive to noise in the simulations, while the step-step

correlation function better captured the discrete changes due to atomic height steps using a small

number of modes. Thus, the selection of the best pair correlation function for a particular system

cannot be fully automated at this time, and requires selection based on an understanding of the

key material structures in the system. Future work could involve a more automated selection

process, although it should also be expected that some understanding of the physical system will

aid in the modeling and reduction process.

3. Tools for model reduction

A significant accomplishment of this grant is the identification of a set of tools that can automate

the model reduction process in a computationally tractable manner. These tools include principal

component analysis (PCA), nonlinear principal component analysis (NLPCA), self-organizing

map (SOM), cell mapping, and k-nearest neighbors interpolation.

Once the pair correlation function has been identified for the atomic simulation, methods are

required to reduce its dimension in order to construct a reduced-order model. The dimension of

the pair correlation function depends on the simulation size, and should be expected to scale with

either the length or volume of the simulation domain, depending on whether the correlation

function includes distances only, or also directions. However, beyond a certain correlation
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length, the correlation functions should reach a plateau value (this is a requirement in the atomic

simulations to ensure that the simulation domain is sufficiently large). Additional redundant

features often exist in these correlation functions, which can be associated with dominant

material structures. As a result, the next step in the modeling framework is to search for lower-

order behavior in the molecular simulations, using the method of snapshots commonly used for

model reduction of partial differential equations, such as in fluid flow [2]. In this approach,

simulations are run under a wide range of inputs and initial conditions, and principal component

analysis (also called proper orthogonal decomposition) is used to identify a lower order state

space spanned by orthogonal basis vectors. The coordinates in this new basis are then used as

the coordinates in a new reduced-order model. Nonlinear correlations between the states may

also exist, and we have demonstrated the use of nonlinear principal component analysis, which is

most efficiently performed after linear correlations have been removed using principal

component analysis via autoassociative neural nets (Gallivan in 2004, Proceedings of DYCOPS).

A further step we take in our modeling method is to discretize this low order state, which enables

construction of a Markov chain model based on input-dependent transitions. We have

accomplished this discretization using self-organizing maps (SOM) [3], although other methods

for clustering data could alternatively be used. The self-organizing map converges with minimal

computation required, and has the additional beneficial feature of creating a projection of the

nonlinear space onto a two-dimensional plane (by organizing the clusters), which can aid in

visualization of trajectories of the system. Our overall approach to state reduction was published

by Oguz and Gallivan in 2005 in the International Journal of Nonlinear and Robust Control.

Of course, it is also possible to not discretize the state space, and instead to construct a low-order

dynamic model on the continuous space after performing the principal component analysis. This
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is accomplished in applications such as fluid flow using a Galerkin projection on the original

system of partial differential equations. However, in the atomic simulations, there is no PDE for

the projection, and it is not clear what should be the mathematical form of reduced-order

dynamic model. One option is to project onto the probabilistic master equation that defines the

probability distribution of the entire system over all possible realizations on the stochastic

simulations. However, due to the extremely large or even infinite number of possible

configurations of the system, direct mathematical operation on this master equation is

prohibitive.

For this reason, we have chosen to discretize the reduced-order state space and construct a

dynamic model based on input-dependent transitions between the discrete states in the model.

As with any reduced-order model based on the method of snapshots, it is not expected that this

model will be able to predict states that are significantly different from those in the original set of

snapshots; however this is not a particular limitation of the discrete state space, but rather of the

method of snapshots. The physical interpretation of each discrete state is that it represents a

typical type of surface or material configuration that was observed during the method of

snapshots training. Similar snapshots are grouped by the SOM into equivalence classes, so that

each snapshot is associated with one of the discrete states. Conversely, each discrete state is

associated with a point in the reduced continuous state space, and therefore is also associated

with the pair correlation function that can be reconstructed from its point in the reduced

continuous state space.

Once the discrete state space has been defined, the dynamic model is constructed by running

short simulations for a particular predefined interval (typically this interval would be based on

time). A simulation, or a set of realizations, is run beginning with a configuration in each
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discrete state, and is run for the discretized time step under a particular process input. Here we

discretize the inputs into discrete levels, and construct transitions for each of these levels

(Interpolation between these levels in discussed in the next section). At the end of each

simulation, the pair correlation function and corresponding PCA reduced coordinates are

computed, and are matched to the discretized state (or states) that best matches, based on a

Euclidean distance of the PCA coordinates. By performing short simulations beginning in each

discrete state, and at each input level, a dynamic model is constructed. The computational

requirements of this reduction depend on the number of discrete states, the number of input

levels, and the number of realizations performed for the purpose of averaging out random noise.

In our GaAs demonstration, we use approximately 150 states, 8 input levels, and 10 realizations

of each run. Since each realization takes approximately 1 hour, the computational time on a

single processor is significant but not intractable. However, the realizations can be distributed

across multiple processors, which thus reduces the time by a factor equal to the number of

processors used.

3. Comparison of mathematical structures for the dynamic model

The reduced-order model as described in the previous section is fully discretized: in time, in the

state, and in the inputs. This model can then be used to predict the evolution of the pair

correlation function for time-varying but piecewise constant process inputs. However, one can

also think about interpolating between these discrete points, which potentially could reduce the

error due to the discretization.

A first method for interpolation was explored using the framework of cell maps. A simple cell

map is a discretized version of a continuous-state dynamic model, in which each discretized state

is mapped to exactly one other state at a future time (under a specified input). This is the case in
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our reduced-order model. However generalized cell maps can be constructed in which a single

state maps to multiple states with differing probabilities [4]. We explored this approach as a

method to interpolate between discrete states, but due to the coarse discretization of our state

space, spreading due to numerical diffusion was large, causing the overall prediction error to

increase in comparison to simple cell mapping. Generalized cell mapping could provide an

improvement under a finer discretization of the state space, but due to the significant

computation associated with running each short atomic-scale simulation, we recommend simple

cell mapping over generalized cell mapping given the current computational technology.

The problem with the generalized cell map is that the number of states with non-zero probability

grows large as the number of time steps advances. To avoid this problem, while still

interpolating, we investigated the k-nearest neighbors interpolation method on the discrete space.

In particular, we focused on k = 2, so that the two best matching units of the current state of the

reduced-order model are identified. The probabilities of each of these two states are computed

based on the Euclidean distance between the current state and two best matching states. The two

best matching states are each propagated forward by one step, and the new state is the weighted

average of the two image cells. In our investigation of this approach, we found that in most

cases similar performance was achieved with simple cell mapping (k = 1) and k = 2, but that

occasionally the k = 2 method selected a second best matching unit that was not a good match,

and that caused the model error to grow. Thus, for our relatively coarse discretization of the

state space, we saw no clear advantage to using k > 1.

4. Quantification of model reduction error

We demonstrated our model reduction approach in a lattice kinetic Monte Carlo simulation of

gallium arsenide deposition, as developed by Itoh and co-workers [5]. Our study included model
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reduction, open-loop control via dynamic programming, and a quantification of the errors in the

reduced-order models. This study has been submitted for publication in Automatica and is

included in this report as Appendix A.

The time for the deposition was divided into 10 intervals, and the average modeling error grew

as the simulations progressed, as would be expected due to propagation of error from previous

steps. We also constructed distribution plots for those errors over hundreds of trajectories, and

found that the error distributions are unimodal and approximately Gaussian in shape at each time

step. At the end of the 10 steps, the error was similar in magnitude to the error associated with

the discretization of the state space. While this is an acceptable and expected level of error, we

anticipate that it will continue to grow as the number of steps grows larger and this level of error

would become unacceptable. While 10 time steps may seem small from the perspective of

simulation and prediction, it does enable the consideration of trajectory planning problems with

10 stages and input levels, which greatly increases the number of possible processing recipes and

potential material structures. For example, for our 8 input levels, there are 810 possible

trajectories that can be considered. Typically, only constant inputs are used, with only 8 input

trajectories possible. Furthermore, exact models over long prediction horizons are not needed

when feedback control is used.

Our efforts to quantify and predict the error associated with the model reduction suggested a new

approach using spatial statistics [6], which is used in the geology community under the name of

kriging. A new project has recently been funded by AFOSR (PI: Gallivan) to develop this

method in the context of dynamic models. In the past it has been used extensively but for static

models in geology and in mechanical design. It is expected to have wide applicability in error

quantification for empirical dynamics models including Markov chains and tabulation models. It
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provides a unifying framework to a range of ad-hoc approaches currently used in modeling of a

range of Air Force applications including molecular interactions, combustion, and turbulent flow.

5. Control

The majority of the work in this program was on the model reduction approach, since the simple

state-affine structure of the final reduced-order model enables the application of most existing

methods for dynamic optimization and control. The discrete nature of our state space enabled

the implementation of dynamic programming for optimal trajectory generation of the flux profile

in the gallium arsenide model. The time-optimal trajectory is reported in Appendix A. We also

note that this control approach could be implemented in real-time using dynamic programming,

since we can easily compute off-line the time-optimal trajectory for each discrete state in the

state space.

The implementation of feedback control requires that the state can be measured or accurately

estimated. Estimation and observers were not a primary focus of the work supported by this

grant, although we did conduct a study demonstrating that the reduced-order Markov chain

model can be used efficiently with an extended Kalman filter, in a simulation study (Gallivan in

2005, Computers & Chemical Engineering). Continued work in our group includes a joint

modeling and experimental study for estimation of microstructure using limited optical sensors

in a chemical vapor deposition process. This work is supported under an NSF grant [7].

6. Modeling of heterostructure field effect transistors

Professor Gallivan spent the summer of 2006 working at Wright-Patterson Air Force Base, under

the support of a US Air Force Summer Faculty Fellowship. The goal of the project was to

develop a mathematical model for the degradation dynamics of heterostructure field effect
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transistors (HFET) made from gallium nitride. Based on the current understanding of hydrogen

diffusion in gallium nitride, a mechanism for degradation of AIGaN/GaN high electron mobility

transistors was proposed and simulated. Hydrogen is introduced into the devices during their

processing and fabrication, and it interacts with defects to electrically passify them. In

particular, H diffuses into the near surface region of the AIGaN and GaN during plasma

processing. However, H- is the preferred state of the hydrogen interstitial in undoped GaN, and

thus there is little diffusion of hydrogen during device operation. The traps depassify thermally

during operation, which is potentially also enhanced by hot electrons and electromigration. This

mechanism would not be reversed by heating, but if H+ is present, then heating the device

uniformly to 200-300 C would induce recovery of a degraded device. Consideration of the

spatial distributions in the HFET is the key to understanding, modeling, and predicting

degradation. Modeling of the spatial distributions enables prediction of power law degradation

dynamics that are observed in experiments but have not previously been understood

theoretically. Experimental validation of this mechanism was needed, and experiments at AFRL

are now in progress. Continued interaction with AFRL is planned under the new grant (PI:

Gallivan).

7. Modeling of hyperbranched polymers

Structure development in highly branched segmented polyurethaneureas has been investigated by

experimental studies and kinetic Monte-Carlo simulations. The experiments were used to

develop a minimal set of reaction kinetics for the molecular simulations. Five descriptors were

used to describe the state of each polymer (the number of the two types of monomer in the

molecule, the number of each type of unreacted end groups, and the number of intramolecular

reactions). Additionally the number of molecules of each type is tracked in the simulations. The
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simulations have been used to suggest new process trajectories, by changing the feed profile for

monomer addition, the dilution of the system, and the amount of monofunctional agents to be

added. Two papers have been written, one of which is published (Unal et al. in 2005, Polymer)

and another which has been submitted and is included as Appendix B of this report. This work

has leveraged funding from the Army Research Office through a collaboration with Professor

Tim Long at Virginia Tech. Work has focused on validating the model, so the model reduction

framework has not yet been applied in this system. However, part of this ongoing collaboration

includes the identification of a minimal state representation for molecular architecture in

hyperbranched polymers, which is now an unsolved problem. The hyperbranched modeling

work has impacted the model reduction methodology in a more indirect way, by providing an

alternative, and very different example, for which the model reduction methodology must also be

applicable.

IlI. CONCLUSIONS AND RECOMMENDATIONS

In conclusion, the most significant accomplishment of this research program was the

development of an automated model reduction procedure for atomic-scale many body

simulations. The reduction was demonstrated in a simulation of gallium arsenide surface

processing, and enabled the computation of a time-optimal process trajectory to reach a desired

surface structure. The computation required for generation of the model and for the open-loop

dynamic optimization was tractable, and enabled a dynamic optimization that would not have

been possible using the full stochastic simulations. Additional materials processing applications

considered were heterostructure field effect transistors and hyperbranched polymers, and these

applications also guided the development of our general model reduction framework. This
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framework should have wide applicability in a range of nanostructured materials processing

problems.
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Appendix A
Submitted to Automatica

Optimization of a thin film deposition process using a dynamic
model extracted from molecular simulations *

Cihan Oguz a, Martha A. Gallivan a

'School of Chemical &1 Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

This study presents and demonstrates an algorithm for computing a dynamic model for a thin film deposition process.
The proposed algorithm is used on high dimensional Kinetic Monte Carlo (KMC) simulations and consists of applying
principal component analysis (PCA) for reducing the state dimension, self organizing map (SOM) for grouping similar surface
configurations and simple cell mapping (SCM) for identifying the transitions between different surface configuration groups.
The error associated with this model reduction approach is characterized by running more than 1000 test simulations with
highly dynamic and random input profiles. The global error, which is the normalized Euclidean distance between the simulated
and predicted states, is found out to be 0.006 on average for the test simulations. This indicates that our reduced order
dynamic model, which was developed using a rather small simulation set, was able to accurately predict the evolution of the
film microstructure for much larger simulation sets and a wide range of process conditions. Minimization of the deposition
time to reach a desired film structure has also been achieved using this model. Hence, our study showed that the proposed
algorithm is useful for extracting dynamic models from high dimensional and noisy molecular simulation data.

Key words: Dynamic Modelling; Model reduction; Modelling errors; Optimal control; Order reduction.

1 Introduction is not possible. An alternative approach is simulating
the dynamics of the system by means of molecular sim-

Thin film deposition is a critical step in manufacturing ulations, such as molecular dynamics (MD) and Monte

integrated circuits and MEMS devices. As device size Catlo (MC) simulations. In MD simulations, Newton's

gets smaller, film thickness and tolerance approach the equations of motion are solved for the position of each

atomic scale, so high quality thin films with uniform and atom in a system. Given the initial location of each atom,

smooth surfaces are desired for high device performance. a potential energy function is used to compute the inter-
Surface processing is commonly used in developing inte- action between atom pairs and this information allows

grated circuits in order to build features with dimensions the computation of the trajectory of each atom over a

of 100 nm and below [1,2]. Some other applications of time interval. On the other hand, Monte Carlo (MC)

surface processing are mechanical coatings [3], thermal simulation is a stochastic method which generates dif-

4] a. ferent discrete configurations of a system by randomlycoatings []and MEMS devices [5]. The structure of a changing the position, orientation and conformation of

thin film is usually a a strong function of process inputs

such as pressure, plasma power and temperature. There- the atoms or molecules in the system.

fore, process models that describe the relationship be-
tween inputs and outputs are needed to control the mi- The specific application considered in this paper is the
crostructure of thin films. Since continuum assumptions epitaxial growth of gallium arsenide (GaAs). GaAs is

are not valid at such small scales, developing accurate generally grown by ultra-high vacuum molecular beam

continuum models from material and energy balances epitaxy (MBE). There are many advantages of using

GaAs over silicon. It has a higher saturated electron ve-
• This paper was not presented at any IFAC meeting. Corre- locity and higher electron mobility, allowing devices to
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approximately one layer per second. Hence, the growth In order to explicitly model and predict discrete atomic
morphology in this process develops in the order of sec- scale structure, a model is required that does not av-
onds. Even with a further increase in computer power, erage over the small length scales. One approach to
such a time scale will not be accessible to simulations address this issue is equation-free computing, which
using MD. Even though MD can capture the atomic vi- was first used for stability and bifurcation analysis [9].
brations in the order of picoseconds, slower events like A low-dimensional system state was assumed (based
an atom overcoming an energy barrier and moving to a on macroscopic arguments), and short simulations were
new site in the crystal lattice will be infrequent when run from specific initial conditions to approximate time-
this technique is used. However, the slower events will be derivatives. More recently, this method has also been
dominant in terms of capturing the dynamics of the pro- applied for optimization [101. However, the reduction
cess. Therefore, we use Kinetic Monte Carlo (KMC) sim- in computational time achieved by this method, com-
ulations to reach the time scales of these slower events, pared to running full molecular simulations, may not be

sufficient to make the approach practical when many

MC simulations are typically used to compute equi- predictions over long times intervals are required.

librium properties. In contrast, Kinetic Monte Carlo In an alternative approach presented by Gallivan and
(KMC) simulations are also able to describe evolution Murray [16], molecular simulations were used to con-
in time. The KMC algorithm was first proposed by Murray [161, moels, sitisee sedtocon-
Bortz et al. [6] and then transformed by Maksym [71 to stut aromdewihiceesaesecibnbus et al. [6] andthn tansforsed by theassump1to groups of similar configurations. This grouping strategy
be used in MBE growth. It is based on the assumption was based on the similarity of the roughness values, and
that the surface evolution is the result of a series of dis enabled computation of the optimal temperature pro-
crete events. These events are classified as adsorption file by penalizing the surface roughness and temperature
(atom attaching to the surface), surface diffusion (atom changes during the thin film deposition. The construc-
hopping) and desorption (atom leaving the surface). In tion of this explicit low-order model reduced the com-
a KMC simulation, the initial arrangement of atoms is putationa o by for oorder o rede when com-speifid ad te pssile ranitinsfrom this configu- puaedowit load by four orders of magnitude, when coin-
specified and the possible transitions fothscniu paewthfull molecular simulations. This significant
ration are evaluated. Then, based on generated random reduction was critical for making the dynamic simula-
numbers, one transition and its location is selected. tion and optimization feasible over macroscopic process-
After the transition is executed, the simulation clock in tibec e
is incremented using another random number. A KMC ing times.
simulation model on a zincblende crystal structure has The construction of a dynamic model relies on the exis-
been developed to describe epitaxial growth of GaAs tence and knowledge of the system state. While a low-
[8]. This model includes the rates (derived from exper- order state was selected in previous studies using physi-
iments) of over one thousand possible events taking cal arguments [9,16], the detailed structure in a molecu-
place on the surface. lar simulation may not even have a low-order representa-

tion. Additionally, small structural features may have a
Several approaches have been developed in the past few large effect on the time evolution of the system. In order
years to integrate molecular simulations with dynamic to address this issue, a previous study by Oguz and Gal-
analysis and optimization. One approach is the deriva- livan [17] proposed the use of high-dimensional step-step
tion of stochastic time evolution equations from the correlation functions, which provided a more detailed
probabilistic master equation [11], under assumptions state description of the film surface, compared to the
that are mostly applicable for well-mixed reacting sys- surface roughness alone. This study demonstrated the
tems. An alternative approach for constructing stochas- implementation of principal component analysis (PCA)
tic differential equations from molecular simulations of for reducing the state dimension and self organizing map
film growth is the generation of stochastic spatially dis- (SOM) for automated grouping of the similar states in
tributed PDEs for the height profile of a surface [12]. the state space. In a more recent study, Varshney and
These models describe continuum behavior and dynam- Armaou [18] also used spatial correlation functions to
ics, and thus are not appropriate for modeling surface characterize the state of their film growth simulation,
structure at atomic scales. This modeling approach, and used equation-free computing to simulate the dy-
with stochastic PDEs, has been used recently to control namics [9].
the surface roughness in a thin film deposition process
on a one-dimensional lattice [13]. On the other hand, The next section explains our modeling approach, which
controller design based on molecular simulations is an consists of state reduction and model identification.
active area of research [14]. In a recent study [15], a re- State reduction is achieved by reducing the dimension
duced order stochastic model obtained from KMC and of the simulation data using principal component anal-
finite difference simulation data has been used to design ysis (PCA) and grouping similar surface configurations
a feedback-feedforward controller in order to maintain using a self organizing map (SOM). After establishing
the current density during the copper clectrodeposition a discrete state space, transitions between different sur-
process at a constant level, face configuration groups have been identified by simple
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ep-fus ction * Incident arsenic dimer (As 2 ) flux: 0.4 ML/s

4- 9 Incident gallium (Ga) flux: Varied between 0.06-0.20
__ PC I ML/s (0.06, 0.08, 0.10,..., 0.20) flux range where the

... th star e U, Oi r tti o of model is valid.
Sn apshot .n..on St]te Lattice size: 300x300 (90000 surface atoms) with pe-

PC IMap_ riodic boundary conditions

S- - -The starting surface in our simulations is the thermo-

ot,,,unioedO inthe] dynamic ground state of GaAs(001), the 02(2 x 4) re-
state'_ J construction which prevails in a wide range of growth

Mapping) conditions.

Fig. 1. Schematic of the modeling approach
Snapshots of surfaces have been recorded at surface in-

cell mapping (SCM) for model identification purposes. crements of 0.01 ML, starting from an initial surface in
In Section 3, we evaluate the performance of the process the 32(2 x 4) configuration, up to 0.20 ML coverage.
model by computing the local and global prediction Eight constant input simulations were performed at Ga
error under highly dynamic input profiles. Section 4 fluxes of 0.06 ML/s, 0.08 ML/s, 0.10 ML/s,..., 0.20 ML/s
describes the minimization of the film deposition time and we will refer this as Training Simulation Set 1. In
to reach an optimal film structure. Finally, Section 5 Training Simulation Set 2, we again have 8 simulations,
provides the conclusions of this study. but this time the flux is kept constant up to 0.10 ML cov-

erage (middle of the deposition), and the flux is shifted

2 Modeling Approach to a different value at that coverage point. To explore the
KMC state space even further, we perform 60 additional
simulations (Third Training Simulation Set), where two

Our modeling approach, which consists of four steps, flux shifts are made at 0.07 and 0.14 ML coverage points.
is illustrated in Figure 1. Characterization of the state
space, reduction of state dimension, discretization of the
state space, and model identification gives us a reduced The SSC function has been computed as S E Rds for
order dynamic model, each snapshot. S is obtained by combining the 16 dif-

ferent portions of the SSC function, which has been
evaluated for four different types of step pairs in four

2.1 Characterization of the state space different directions on the surface (4x4=16 combina-
tions). Each portion has 300 variables, which is equal

A step-step correlation (SSC) function is used to de- to the lattice size. Therefore, ds has a value of 4800
scribe the microscopic state of the system during the (300 x 16 = 4800). We have a total number of snap-
simulations. This function gives the distance and orien- shots n,=1521 (76 simulations, 20 snapshots for each
tation between pairs of steps on the surface, where a step simulation, plus the snapshot of the initial state of the
is defined as a change in height from one atomic surface system). S of all snapshots in the training data are col-
site to the next. Since the occurrence of every type of lected in D E R480 0 x 1521 . Before performing PCA, D is
step pair (up-up, up-down, down-up and down-down) is first transformed into D' E R4s ° X 1521 with the follow-
counted on the surface in both directions on the Carte- ing elements:
sian coordinate axes, the spatial correlation function is
high-dimensional and may contain redundant informa-
tion. The data is also noisy. Noise is reduced by perform-
ing multiple realizations under identical conditions and D',, Dij - Dnct 1 ,,. (1)
averaging the results. After averaging, PCA is used to
determine the number of independent variables needed
to fully determine the SSC function. This technique is Here, D,n,,, E R 4

8
0 0 is defined as:

widely used to eliminate linear correlations among the
variables in data sets. It is a crucial step in our study.
The reduced state dimension makes it possible to con-
struct a compact dynamic model.

The KMC simulations have been carried out using the Dmeani - (i = 1,2, ...4800). (2)
kinetic barriers calculated by Itoh [8] with the following nO
parameters:

" Growth temperature: 580 C In order to complete the pre-processing of D, D' is trans-
* Film deposition interval: 0.20 monolayers (ML) formed into D" e R4s ° ° x 1521.
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SOM. Because, during model identification, rather than
the transitions between each surface structure, only the

D 'J = DJ/Dstd,, (i = 1, 2, ...4800, j 1, 2, ... 1521) transitions between the groups are computed.

(3)
Various training procedures for SOM are described else-

Dstd E R4800 is defined as: where [19]. SOM training is accomplished by sequen-
tial or batch-wise comparison of snapshots to the overall
map, and then updating the prototype vectors v E R'

Z/ " D of the map nodes to match and organize the snapshots.

DDtd,i ' (.) (4) Once the map is trained, each snapshot is associated
n, with the node that has the closest prototype vector, as

measured by the Euclidean distance. The default num-

Hence, by pre-processing D, the variance of each variable ber of nodes in the map is computed by the SOM tool-

in the SSC function is made equally important before box using a heuristic formula which is a function of the

PCA is carried out. In other words, small features with number of rows (snapshots) in the data matrix. The map

low variance will not be neglected. size can also be increased to provide a finer discretiza-
tion of the state space. Another important SOM param-
eter, the ratio of the sidelengths of the map, is set equal

2.2 Reduction of the state dimension to the ratio of the two largest principal components of
the data matrix.

Principal component analysis (PCA) has been per-
formed through the singular value decomposition of 2.3.1 Results
matrix D" by computing the singular values of this
matrix. The squares of the singular values correspond In this study, PCA is used to find the minimum di-
to the eigenvalues of the covariance matrix of D", and mension that can represent the microscopic state of the
the ratio of each eigenvalue to the sum of all eigen- surface snapshots recorded during the simulations. This
values (normalized eigenvalue) is plotted against the method consists of computing the variance captured by
principal components. The point on the plot, where a each principal component of the entire data set and se-
sudden decay of the normalized eigenvalue is seen, givesthe minimum number of principal components (the lecting the most important principal components that

the m nu r ta prca rco en t (the d can reconstruct the data well. Figure 2 shows the nor-
minimum dimension n) that can reconstruct the data malized eigenvalues of each principal component. A knee
effectively. At this point, we project each snapshot's shape is observed after the second principal component
SSC function onto the first n principal components D". and the first two principal components capture nearly
We define x E Rn as the coefficient set with these new all of the variance within the data set.
coordinates. Each x characterizes a particular snapshot.
As a result of PCA, small features in the SSC function, 10,
which do not contribute to the variance of the D" signif-
icantly, are eliminated. We note that this could create a
problem later while grouping similar surface structures =
according to first n principal components, because these >C
small features may possess valuable information about .)

the differences between the surface structures and their 4)

evolution in time. ) 10-N

E
2.3 Discretization of state space 0

After performing PCA and obtaining a coefficient set to
characterize each surface snapshot, we use self organizing
map (SOM) to eliminate some of the nonlinear correla- 10 2 4 6 8 10
tions within the data set by employing MATLAB's SOM Principal component number
Toolbox. Snapshots with very similar microstructures
are grouped by SOM, and snapshots in the same group Fig. 2. Normalized eigenvalues versus principal components
are viewed as equivalent when identifying the dynamic
model in the next step. The PCA data is discretized as a However, data reconstructions with 2 and even more
part of this step, since snapshots are grouped among the principal components showed us that at least 5 com-
nodes of SOM. As a result, the number of discrete states ponents are needed in order to effectively represent our
is finite. The computational load for the model identi- data. Specifically, 5 principal components reconstructed
fication is also reduced with the grouping achieved by the small clusters of atoms on the surface (with a size of
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less than 20 lattice units) much better than 2 principal 3). Table 1 shows the statistics of three maps with 192
components. Figure 3 illustrates this comparison, nodes, which were trained using these three different

data sets. SOM1 and SOM2 have similar statistics, ex-

55 snapsh . . ..1cept that SOM2, which has been trained with a larger

- reconstruction using 2 principal components data set, has a larger number of surface snapshot groups.
S- reconstruction using 5 princpal components This suggests that Training Simulation Set 2, where the

4.5I  flux was changed in the middle of the simulations at 0.10
-4 ML surface coverage, enabled us to see surface struc-

tures that had not been accessible through constant in-

. 3 ' put simulations (Training Simulation Set 1). On Table
UO 1, as we move from SOM2 to SOM3, we again observe

an increase in the number of surface snapshot groups.
Therefore, we conclude that Training Simulation Set 3

(during which the flux has been changed twice during the
simulations) explored the KMC state space even further,
producing additional surface structures compared with

0 1 10 20 30 40 50 60 Training Simulation Sets 1 and 2. SOM3 has an average

radius (lattice units) quantization error of 5.1, whereas the average prototype
vector size is 53.0. If needed, the average quantization

Fig. 3. Comparison of the reconstructions using 2 and 5 error can be reduced by adding more nodes to the map,
modes with the original data for snapshot 61. This surface but we were able to obtain a useful model with SOM3.
is obtained under 0.10 ML/s Ga flux and has a 0.20 ML
surface coverage. The region enclosed with the gray dashed Another SOM metric is the topographic error, which is
line represents the surface structures with a size of less than the proportion of all the data vectors for which first and
20 lattice units. second best matching units are not adjacent on the map
As already defined in Section 2.2, the coefficient set x [19]. SOM3 also has a topographic error of 0.01, which
for each surface snapshot is obtained by taking the inner means that for only 15 of the 1521 snapshots, the first
product of the snapshot's SSC function with the n = 5 and second best matching units were not adjacent on the
principal components of the data matrix D". This re- SOM. Topology preservation is not required for a good

duced representation, which includes the coefficient sets state representation, but it aids in visualization of the
of every snapshot, is used to train an SOM. For train- dynamics on the map.
ing, we used the default map size, which is based on the
number of surface snapshots in the training data. Each At this point, three SOMs have been generated. Only
SOM node has its own prototype vector having the same one of them, SOM3, will be used to identify a dynamic
dimension as each snapshot in the data set (n = 5). As model, since it has been trained with the most extensive
a result, each map node also has its own SSC function amount of training data.
S, which is the PCA reconstruction of its prototype vec-
tor v. Thus, each map node is associated with a type of Table 1

surface. Statistics of three SOMs trained using different data sets

The quality of the resulting map can be evaluated by Map Training Quant. Proto. Topog. Number

calculating the average quantization error over the input sim. sets error vec. size error of groups
data, given by IIx - VBMUII2, where VBMU is the proto- SOM1 1 4.1 54.1 0.01 119
type vector for the best matching unit, for the snapshot
with the projection vector x [19]. In words, the Eucli- SOM2 1,2 4.8 54.4 0.02 142

adean distance between each surface snapshot and its SOM3 1,2,3 5.1 53.0 0.01 175
best matching SOM node is computed, and the average
of these distances gives the average quantization error. 2.4 Model Identification

In order to see the effects of training data on the map

quality, we generated multiple maps while keeping the 2.4.1 Simple Cell Mapping
map size at 192 nodes. For each map, the training phase

has taken approximately 3 minutes using a Pentium 4 Characterization of the surface snapshots from all of

processor with a speed of 3 GHz. The first map SOMI is the training simulations gives the system's state space.

trained with 161 surface snapshots (from Training Sim- As explained in the previous section, the surface snap-

ulation Set 1), the second map SOM2 is trained with shots are grouped into discrete states using SOM, ac-
321 surface snapshots (from Training Simulation Sets 1 cording to their similarities in terms of surface morphol-
and 2) and SOM3 is trained using all of the 1521 sur- ogy. These groups represent the cells, and simple cell

face snapshots (from Training Simulation Sets 1, 2 and mapping (SCM) or generalized cell mapping (GCM) can
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be used for obtaining a global view of the behavior of Therefore, in the reduced order model, we have eight
the system [21]. A cell map is formed by dividing the transition matrices for eight flux settings. The sum of
state space into a finite number of cells (using SOM) the elements in each column of A is equal to one, be-
and approximating the behavior of the system by means cause for each column, only one element of A is non-zero,
of transitions between the cells. SCM is a determinis- whereas the other elements are equal to zero. In other
tic approach in which each cell is mapped into exactly words, there is only one possible transition from each
one other cell for a particular input. In GCM, each cell configuration group under a particular input. This con-
can have several image cells. In other words, a cell can struction of A is due to the deterministic nature of the
be mapped to several other cells. Using this stochastic simple cell map. If the system makes a transition from
approach, we can assign a probability of the system be- configuration s to t at time step j with the flux setting
ing in a cell at a specific time and extract the dynamic u[j], this transition can be represented by a transition
properties. In the current study, we implement the SCM matrix with the following properties:
approach to identify the dynamic model for the process,
because SCM provides a deterministic model to describe
the evolution of the surface structure under different ma- 1 if k = t;
terial flux profiles. The following are the steps used for Ak,s =
model identification: 10 if k j t.

" One surface configuration is selected from a particular At time step j, the surface properties of the system are
map node. given by x[j] (set of projection coefficients defined in

" A new simulation is started from that surface config- Section 2.2):
uration and run for an incremental coverage interval
with one of the flux settings.

" The final surface structure is recorded and the config- x[j] = Xp[j[ (6)
uration group, which has the closest microstructure
to that final structure, is obtained. In other words, where X E R"' has the v E R" (prototype
the flux-dependent transition (from one configuration vector) of each configuration group (SOM node).
group to another) is found. In other words, v of the configuration group i is

When the procedure described above is repeated for ev- V {X 1, X 2 ,i, X 3,6 X 4 ,, X 5,i}.

ery map node and each flux setting, we identify a reduced
order dynamic model. The identification procedure re- 2.4.2 K-nearest neighbor algorithm

quires running 146 x 8 = 1168 KMC simulations (for
146 map nodes and 8 flux settings), which takes approx- Cell mapping can be generalized to enable interpolation

imately 7.3 days using a computer cluster made up of 16 between cells. In order to carry out the interpolation,
computers, each having an Intel Xeon processor with a we use the k-nearest neighbor algorithm [20] and predict

speed of 2.66 GHz. the evolution of x for a given flux profile. When k=1,
this algorithm produces results identical to simple cell

The reduced order model is described as: mapping and no interpolation is made. The following
steps represent the k-nearest neighbor algorithm when
k=2:

pj + 1] = A(uUJ])p[j[ (5) (1) Let Xold be the vector representing the surface state

at an initial film coverage. This vector is compared
where j is the time step (or coverage level) number, with all the prototype vectors on the SOM and its
u~j] E R is the input (or flux) value, p E Rm is the proba- best matching unit (BMU) and second BMU are
bility vector describing the configuration group that the found based on the Euclidean distances between
system is currently in and A E Rmxm is the transition these vectors. Let these these two SOM nodes have
matrix. The value of m (dimension of p) is equal to the prototype vectors vi and v 2 , where v, and V2 repre-
number of configuration groups in the state space (the sent the first BMU and second BMU, respectively.
number of cells in the cell map). We define p as: (2) Compute the distances d, = l1XoId-Vl 112 and d2 =

IIXoId-V2112.
(3) Compute the weights associated with these two dis-

1 if i = l; tance values w, = (1/di)/(1/d, + l/d2) and w2 =
pi 0 if -'-(1/d 2)/(1/d1 + 1/d2).
1 0 ii . (4) Predict the system state at the next step from

Xnm = W 1 .V3 + W2 V4 , where x,,. is the state vec-

Here, 1 is the number of the current system configura- tor prediction for the next step, v3 and v 4 are the
tion. The transition matrix A is a function of the input, prototype vectors of the nodes determined from
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SCM (vi transitions into v3 , and v 2 transitions both surfaces evolving to the same map node. In those
into v4 under the particular flux setting). cases, CME = 0. Also, with a 0.90 probability CME <

(5) Set Xold = x,,,e and repeat steps 2-4 to make pre- 0.0075, supporting the fact that there is a very strong
dictions at higher film coverage values. At each cov- chance for surface structures in the same group to show
erage value, the predicted x can be converted to the similar dynamic behavior. In order to reduce CME, a
high dimensional SSC function by multiplying the larger SOM can be used. The tradeoff is that this would
elements of x with the eigenvectors obtained from increase the dimension of the cell map and the compu-
the training data D". tational load associated with the system identification

step.
The algorithm described above is the k-nearest neigh-
bor algorithm with k=2. Here, the interpolation between 1
prototype vectors provide the opportunity to improve 0.9-
the accuracy of the prediction. On the other hand, when 1 0.8-
k=l, k-nearest neighbor algorithm is identical to SCM. C

In that case, the second BMU is not identified and the C
weights are not computed. 0.6

0.5

3 Performance Evaluation of the Dynamic 0.4
Model >

E 0.2
3.1 Local Error Quantification Z

02~

The core hypothesis of our model reduction approach 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 O.04

is that the surface structures in the same configuration Cell Mapping Error
group (SOM node) should show similar dynamic behav-
ior under identical process input (material flux). SCM, Fig. 4. Cumulative distribution function of the cell mapping
which is used to extract a dynamic process model in this error
study, is also useful for testing this hypothesis. We define
the cell mapping error (CME) to quantify the different 3.2 Global Error Quantification

dynamic behaviors of surface structures which belong to
the same configuration group. The following is the pro- A dynamic model is constructed by finding the flux de-
cedure we used to find CME: pendent transitions between the nodes of SOM3 under

all flux settings. In order to test the predictive ability of
(1) Randomly, select one surface structure from a map our model, 1210 test simulations are performed. In these

node and identify where this structure is mapped simulations, we split the film coverage domain (from 0 to
on the SOM under a particular flux setting (first 0.20 ML) into 10 equal intervals. The gallium flux value
cell mapping). is kept constant in each interval. However, its value ran-

(2) Randomly, select another surface structure from domly changes when moving from one coverage interval
the same map node and run another simulation to the next. This strategy provides very different flux
starting with this new surface structure and per- profiles than the ones used to generate the training data,
form SCM again (second cell mapping). which involved a maximum of two flux switches. Figure

(3) Compute CME = IIS1 - S2I12/(IIS 1 + S2112/2), 5 shows the flux profile for one of these simulations dur-
where S1 and S2 are the SSC functions of the SOM ing which the flux is randomly changed at each step.
nodes coming from the first and second cell map-
ping, respectively. It should be noted that these As described in Section 2, surface snapshots from the
functions are reconstructed from the prototype vec- test simulations at different coverage levels (10 surface
tors of the map nodes. snapshots from 0.02 ML to 0.20 ML film coverage) are

(4) Repeat steps 1-3 for all SOM nodes under all flux characterized using SSC functions, and the coefficient
settings. set x E R ' of each surface snapshot is computed. Then,

each x is matched with an SOM node based on the cri-
CME is computed by picking two different surface struc- teria of minimum Euclidean distance between x and the
tures from each node and performing SCM under each prototype vectors of the SOM nodes. In other words,
of the eight flux settings. In order to characterize the the best matching unit for each x is sought. For the test
distribution of CME, its cumulative distribution func- simulation with the flux profile shown in Figure 5, the
tion is computed. This function is defined as CDF(y) = predicted trajectory and the KMC simulation trajectory
P(CME < y) and gives the value of the probability are given in Figure 6. Here, the prediction comes from
that CME < y for a given y. Figure 4 shows the CDF the k-nearest neighbor algorithm (with k=l) and each
of the CME. 52% of the mappings are identical, with hexagon represents an SOM node corresponding to a
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Fig. 5. Flux profile of a test simulation Z
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Fig. 7. Reconstruction of the SSC function with the proto-
type vector of the SOM Node 186 and the original KMC
simulation data at final film coverage

test simulations, which were not included in the training

data. The global (multi-step) error associated with the
predicted SSC function is defined as:

Fig. 6. Trajectories of the KMC test simulation (red line) ESSC = 11S. - SpI12/HS4I.2, (7)
and the prediction (black line) on SOM3 where S, is computed from the KMC simulation data

surface structure group. The simulation follows a path and SP is reconstructed from the predicted state vector

starting from the SOM Node 1 (initial surface structure) v (prototype vector of the SOM node). The values of

and moves to the right hand side of the SOM as the Essc at different film coverage levels (for the test sim-
film coverage increases. Since each simulation starts from ulation with the flux profile in Figure 5) are less than

SOM Node 1 and the transitions from each node under 0.018 according to Figure 8. This figure compares the

all flux settings are known, the prediction of the simu- error in the predictions made using the k-nearest neigh-

lation trajectory (using the dynamic model) is straight- bor algorithm with different k values. For this particular

forward. Figure 6 indicates that there is an agreement test simulation, predictions are less accurate with k=2.

between the predicted trajectory and the trajectory of However, for more than 90% of the test simulations, pre-

the KMC simulation. Similar results were obtained for dictions did not change when k value was increased from

all test simulations. In some instances, these trajectories 1 to 2. This is because, at low film coverage levels, differ-

passed through neighboring SOM nodes. However, as ent surface configuration groups (corresponding to dif-

Table 1 indicates, SOM3 has a very low topographic er- ferent SOM nodes) do not possess significantly different

ror. Hence, neighboring SOM nodes are similar, so slight surface features (or different x) and they are mapped

differences between these trajectories do not jeopardize to the same SOM node at subsequent coverage levels.

the accuracy of the state predictions. Therefore, throughout the rest of this section, we only
report the results obtained with k=1, which is identical

SOM Node 186 represents the predicted film structure to simple cell mapping.

at the final coverage value (0.20 ML). Figure 7 shows the
SSC function reconstructed from the prototype vector As a part of the global error quantification, we also com-
of this SOM node. The reconstruction agrees with the puted Essc at nine evenly distributed film coverage val-
KMC simulation's SSC function. Hence, our dynamic ues (0.04 ML, 0.06 ML,..., 0.20 ML) for three large test
model is capable of predicting the final film structure simulation sets (with random input profiles), none of
quite well. This figure also illustrates that the noise in which had been in the SOM training data. It should be
the KMC simulation data is considerably reduced when noted that the SOM node 1, which represents the initial
the SSC function is reconstructed from the prototype film structure at 0 ML, maps to the same SOM node
vector. at 0.02 ML with all flux settings. Hence, the prediction

error at 0.02 ML is not computed. The three test sim-
In order to evaluate the performance of the reduced order ulation sets include 300, 600 and 1210 simulations, re-
dynamic model, we quantify the prediction error for the spectively. Figure 9 compares the mean values of Essc
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0.018 1

0.016 - 0.9
r
3 0.8

0.014 L_
0.7 - training simulations

0.012 0.6 f - CDF of 300 simulations
.0 0.6 - COF of 600 simulations
Z= - CDF of 1210 simulations

w 
0 .5

0.08 [-0- Essc with kW 0 0.4
.e Essc with k=2 _0

0.006- E
= 0.2L)

0.004 0.1

0.002 0
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.005 0.01 0,015 0.02 0.025 0.03 0.035 0.04

Surface coverage (ML) Prediction Error

Fig. 8. The evolution of Essc for the test simulation with Fig. 10. Cumulative distribution function of the Essc for
k=1 and k=2 three test simulation sets

200o ulation sets are very similar and enlarging the size of
SW s tthe simulation set does not change the distribution of

- with 600 simulations the prediction error significantly. Also, the probability
1s- with 1210 simulations of having an Essc less than 0.01 is around 90%, which

10 _- Essc of the training data again supports the fact that the reduced order dynamic
model has a good prediction capability.

Table 28- Mean and standard deviation values of Essc for three test
W simulation sets

6 Test simulation set Mean Standard deviation

1 0.0057 0.0035
5-

2 0.0058 0.0037

34 0.06 0.08 0.1 0.12 0,14 0.16 0.18 0.2 3 0.0058 0.0037
Surface coverage (ML)

In the last part of this section, we compare different types
Fig. 9. The mean value of Essc at different film coverage of prediction error to understand the major factors con-
levels for three test simulation sets and the training data tributing to the inaccuracies in the model predictions.

at different film coverage levels for these three test sim- We define two alternatives to Essc in order to investi-

ulation sets and also the Training Simulation Set 3. The gate the effect of normalization (using Dmean, and D~tj

mean EssC is below 0.012 at all coverage levels. It is defined in Section 2.1.) on the prediction error. The first

interesting to note that the dynamic model was able to alternative to Essc is

predict the final film structure in the training simula-
tions with less error than the test simulations. This is
because of the fact that the data from the training sim- Essc, = ISt. - S'p12/IS'1I2 (8)

ulations were used as an input in the system identifica-
tion, where as our dynamic model was not as familiar where S'. and S'P are the normalized versions of S. and
with some of the surface structures produced during the Sp:
test simulations, especially at high film coverage.

As shown in Table 2, the mean values of Essc for the S'S,i = Ss,i - Dmeani (i = 1,2, ...4800) (9)
predictions associated with the test simulation sets are
around 0.006, but the standard deviation values are com-
parable to the mean values indicating a wide distribu-
tion of the prediction error. In order to get a more clear St p,, = Sp,i - Dmean,,i (i = 1, 2, ... 4800) (10)
idea about the distribution of Essc, its cumulative dis-
tribution function (CDF) is computed for the three test
simulation sets and also the Training Simulation Set 3. Dm,,,n,i is already defined in Section 2.1. The second
Figure 10 shows that the CDF curves of the test sim- alternative to Essc is:
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Table 3
S"= s - S" II ,iS" (11) Mean values of Eq, E , Essc, and Essc,,. Eq, which is com-

Es,, S" - 2 / S2 (11 puted for each data vector and the prototype vector of the
data vector's best matching unit on SOM, is the difference

where S", and S"P are the normalized versions of S', between data vector and prototype vector during SOM train-

and S'P, respectively: ing. The other errors are the normalized versions of Essc.

Error type Mean

S ,, = S'8 ,/Dtd,i (i = 1,2 ....4800) (12) Eq 0.1094

E. 0.2277
Essc 0.0057

S"p,i = S'p,i/Dtd,i (i = 1,2, ...4800) (13) Essc 0.17
Essc, 0.1758

Dtd,i was also defined in Section 2.1. Table 3 shows that Essc, 0.2675

mean value of Essc,, (0.2675) is much higher than that
of Essc, (0.1758). Comparison of the CDF of Essc, and C
Essc,, given in Figure 11 also shows a higher Essc,, 0 0.9
for any value of the CDF. This indicates that features 2 0 CDFof E

= 0.8 DoE
with large variance are predicted more accurately than " 0.7 - CDF of Es
the ones with small variance. It follows then, that the . 0 CDF of'S - CDF of Essc..

features with small variance are more noise-corrupted in . 0.6

the KMC simulations. V 0.5

0.4
The quantization error, which is defined in Section 2.3.1, 2 0.3

provides a minimum bound on the prediction error. The E
average quantization error (Eq) for SOM3 is 0.1094. This o 0.2
error is due to the discretization of the state space, and 0.1

does not include any additional error propagated from 0
one step to the next one through the dynamics of the 0 0.2 0.4 0.6 0.8 1 12

thin film deposition process. Therefore, we define an- Prediction error
other kind of prediction error as Fig. 11. Cumulative distribution function of different types

of error

E= 1x8 - Xpj[2/[x,[2. (14) 4 Optimization of the final film structure and

Here, x, E R5 represents the predicted state and X, E the deposition time
R5 is computed from the KMC simulation data:

In this section, our dynamic model is used to minimize
the deposition time to reach a particular surface config-

Xp,i = S/"p. Ui T  (i = 1, 2, ...5) (15) uration. One desired structure is a very regular surface
with many large islands and a very low Ga adatom (iso-
lated Ga atom) density. This surface structure can be
identified by minimizing:

xs,i = S/i. . U T  (i = 1,2, .... 5) (16)

where Uj E IR s °° is the i
t
h principal component of D". F = ai - bici (17)

where aj, bi, and c are the values of Ga adatom den-
As shown in Table 3, the mean value of E,, which is com- sity, typical island size and the number of islands with
puted from the prediction of states in Test Simulation the typical island size for surface configuration i, respec-
Set 3, is twice as high as Eq incurred during the training tively. From the Training Simulation Sets 1, 2 and 3, we
of SOM3. From this result, it can be concluded that the extract aj, bi, and cj values of the surfaces at 0.20 ML
propagation error due to dynamics is not negligible and surface coverage.
accounts for approximately half of E,. Hence, the other
half of the prediction error comes from the discretization According to equation (17), the optimal surface struc-
of the state space. Figure 11, which compares the CDF ture is Snapshot 861 (from Simulation 43). Snapshot 861
of Ex and Eq, also supports this conclusion. Here, for is matched with the Node 182 of SOM3 during the train-
any particular value of error, the probability of having ing. This node is accessible through a constant input
that particular value of E. is higher than that of Eq. simulation with a flux of 0.08 ML/s. Identification of the
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flux profile that would reach Node 182 in the minimum 0.2]

amount of time can be posed as a dynamic programming
problem [22].

0.1-

M L. _

Let the decision variables dq(q = 1, 2, 3, ... 11) be the im- 0
mediate destinations on different stages. In this prob- 00% 0.05 0.1 0.15 0.2
lem, we have 11 stages for 11 film coverage levels (0 ML, Surface coverage (ML)
0.02 ML, 0.04 ML,...0.20 ML) and dq corresponds to the
map node number at stage q. Thus the route (trajec- Fig. 12. Optimal flux profile computed by the dynamic model
tory) of the deposition is dl, d2, d3...d1n, where d, = 1
and d1l = 182 since the initial surface structure is rep- flux settings and 10 coverage intervals, there are 8"' pos-
resented by SOM Node 1 and the final (optimal) surface sible input profiles. According to the dynamic model,
structure is in Node 182. only 20% of these profiles are able to reach SOM Node

182. Running each simulation takes about 24 hrs utiliz-
Let fq(s, d,) be the total cost of the best overall policy ing an Intel Xeon processor with a speed of 2.66 GHz,
for the remaining stages, given that we are in state s so it would have taken 2.9 million years to run all of the
(number of the map node we are currently in), ready to 8"0 simulations with a single processor. However, using
start stage q, and dq (the number of the map node we our dynamic model, it took only 5 minutes to predict
are moving to) is selected as our immediate destination. the evolution of the film structure during these simula-
Here, the total cost is the deposition time and each de- tions. The minimum cost was obtained with the input
position interval is 0.02 ML long. Given s and q, let d; profile shown in Figure 12. Figure 13 shows the real and

denote any value of dq that minimizes fq (s, dq) and let the estimated trajectories of this KMC simulation on

f* (s) be the corresponding minimum value of f,(s, d,). SOM3. Again, we have a good agreement between these

TNus, two trajectories. This particular input profile provided
a 48% reduction in the deposition time to reach opti-
mal structure when compared with the constant input
KMC simulation under 0.08 ML/s Ga flux. The values

m fq(s, dq) = fq(8, d) (18) of Essc, Essc, and Essc,, for the prediction of the fi-

where nal film structure are 0.0159, 0.2207 and 0.2312, respec-
tively. These values are within the range of cumulative

fq(s, dq) = c.,dq + fq+l (s, dq+i) (19) distribution functions shown in Figures 10 and 11. In or-

Here, the cost C,,d,, is the time incurred while moving der to visualize the accuracy of this prediction, we also
from s to dq, given by: plotted a portion of the SSC functions, which belonged

to the actual KMC simulation data, its best matching
unit on the map (Node 184) and Node 182 (predicted

Cs,dq = L/Fs,dq, (20) film structure). According to Figure 14, the simulation
data is much noisier than the reconstructions. Also, the
lower peak value of the SSC function (around radius= 12)

where L is the length of a single coverage interval (0.02 of the SOM Node 182 is slightly off compared to the one
ML) and F,dq is the value of the gallium flux that pro- coming from the KMC simulation. However, the plateau
vides a transition from state s to dq. The ultimate desti- corresponding to the number of step pairs which are dis-
nation reached at the end of stage 11, f1 (182) = 0. The tanced with more than 20 lattice units is captured well
objective is to find f, (1) and the corresponding route. with the prediction. Hence, these two SSC functions are
Dynamic programming can solve this problem by succes- very similar. This similarity indicates that the dynamic
sively finding f~o(S), f(s), f(s)..f(s) and using f(s) model, once again, does a good job in terms of predict-
to solve for fr*(s). This is achieved by eliminating some ing the final film structure. Furthermore, this prediction
of the suboptimal trajectories as we move from fto(s) can be improved by increasing the size of the training
to ft (s). Because of the limited state space obtained by data set and number of SOM nodes in the cell map, or
grouping similar surface configuration groups, it is possi- possibly by placing a greater weight on the important,
ble to solve this dynamic optimization problem (finding but small sized features, during the training of the SOM.
the optimal flux profile) using exhaustive enumeration
(without eliminating the suboptimal paths at each step)
in a short amount of time. 5 Conclusions

We used eight flux settings (0.06,0.08,...0.20 ML/s) and This study describes an approach to understanding and
found the optimal input profile that would give us min- modeling process dynamics from molecular simulations.
imum deposition time to get to SOM Node 182. Each The proposed algorithm is used on high dimensional Ki-
input profile is a sequence of 10 flux values, and there netic Monte Carlo (KMC) simulations of epitaxial GaAs
is a flux value for each coverage interval. Having eight thin film deposition. This algorithm consists of three
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1210 test simulations with highly dynamic input profiles
and turned out to be fairly low (less than 0.006 on aver-
age for 10890 predictions). Furthermore, the minimiza-
tion of the deposition time to reach a desired film struc-
ture has also been achieved using the compact dynamic
model. Our study shows that the proposed algorithm is
useful for extracting reduced order dynamic models from
high dimensional and noisy molecular simulation data.
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Interpretation of molecular structure and kinetics in melt condensation of A2

oligomers, B3 monomers, and monofunctional reagents

C. Oguz, S. Unal, T. E. Long, and M. A. Gallivan

Abstract

This manuscript applies kinetic Monte Carlo simulations to interpret experimental

measurements, in the polymerization of hyperbranched poly(ether esters)s in a melt

condensation of A2 oligomers and B3 monomers. Building on the analytical modeling of

Flory and Stockmayer, additional effects of cycle formation, unequal reactivities, and

end-capping reagents are added into the simulations, to describe A2+B3 polymerization in

the absence of a solvent. The experimental data has been published separately', and here

it is compared to the model predictions in order to quantitatively assess whether the data

is consistent with these models. Based on the modeling, we conclude that cycle

formation is negligible, suppression of the third B-group is insignificant, and the mobility

of the free B3 monomer leads to enhancement of its reaction rate. The addition of the

monofunctional end-capping reagents does not necessarily lead to suppression of

branching in the A2+B3 system, and depends sensitively on the stoichiometry of the

reactants.
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1. Introduction

The shape and topology of organic molecules has a profound effect on their properties. 2

In the last two decades, synthetic polymer chemists have introduced a new class of highly

branched macromolecules which are composed of multifunctional monomers, and are

classified as either dendrimers or hyperbranched polymers. Dendrimers are typically

synthesized using multi-step reactions and they offer superior control of molecular size,

shape, and functionality. On the other hand, hyperbranched polymers are less ordered but

are easier to synthesize.

Discussion of the synthetic methodologies for preparation of a wide range of

hyperbranched and dendritic polymers can be found in several extensive review articles. 3

5 Many of the past experimental studies have focused on the synthesis and

characterization of ABn type monomers (n>l), particularly with AB 2 monomers.
3-6

However, very few of the ABn type monomers are commercially available due to their

lack of symmetrical functionality and tendency to react prematurely. 4 As a result, A2+B3

polymerization has recently been the subject of extensive research 7"14 since it provides an

alternative and more convenient way to synthesize highly branched polymers. In contrast

to polymerization of ABn type monomers, these systems offer a wider range of molecular

structures depending on the monomeric types and processing conditions. For example,

A2+B3 polymerization has been performed by heating a mixture of A2+B3,1 and also by

drop-wise addition of A2 into B3 15. The molar ratio of A2 to B3 can also be varied 4 16, 17

Moreover, our recent efforts have demonstrated the opportunity to control the distance

between branch points through the judicious selection of various telechelic oligomers as

A2.
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Modeling studies have long been used to explain experimental observations in an

adhoc fashion, and modeling is often used to steer the discovery of synthetic methods and

the formation of novel architectures. Early work of Flory16 and Stockmayer 18, 19 on the

step growth of multifunctional monomers was based on the assumption that there was no

cycle formation in these polymerization processes, which enabled the calculation of

molecular weight using an infinite series solution. The models of Flory and Stockmayer

are useful because they enable quantitative predictions of polymer properties. While it is

intuitive that a branched polymer that is composed of A2 and B 3 monomers will

ultimately gel, the model generates the quantitative prediction of gelation at 87% A

conversion for the stoichiometry of A2:B3 = 1:1.19 More recently, this method has been

extended to include the effect of cycle forming reactions on the gel point.20

In order to predict the time-evolution of polymerization, kinetic models based on

mass-action kinetics are often employed. Ordinary differential equations are used to

describe the concentration of each type of branching unit.21' 22 For example, a

trifunctional monomer may exist in four states: no reactions (free), one reaction

(terminal), two reactions (linear), and fully reacted (dendritic). These models are

typically of low dimension and may be solved analytically in some cases, or numerically

in others. A disadvantage of this modeling approach is that no information is provided on

the molecular weight distribution of the resulting polymer.

When prediction of the molecular weight and its distribution is also desired,

population balance models are commonly used, in which the concentration of polymers

of each possible size is computed 17, 21, 23-25 These models therefore have high

dimension. For systems of linear polymers composed of a single monomer type, the
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kinetics are fully described by the number of monomers in the polymer. Thus, if one

models the concentration of polymers up to a maximum size of 1000 monomeric units,

then the dimension of the model is also 1000. However, in branched polymers, more

information is needed to describe the kinetics, such as the number of reactive end groups

in the polymer. When several descriptors are needed to describe each polymer, the

dimension of the population balance model grows rapidly.' 7 For the model considered in

this manuscript, six descriptors are used to describe each polymer: the number of A2

monomers, the number of B3 monomers, the number of unreacted A groups in the

polymer, the number and type of unreacted B groups (linear or terminal), and the number

of end-capping agents. Solving a population balance model with six descriptors would be

very intensive computationally.

Generating functions and the method of moments are often used to reduce the

dimension of these population balance models. However, this approach becomes much

more difficult as the number of descriptors grows, since moments must be included for

each descriptor. The difficulty of this approach is illustrated by the recent paper of

Dusek, Duskova-Srmckova, and Voit' 7, in which unequal reactivities and monofunctional

reagents were considered separately, but not simultaneously.

Cycle formation was neglected by Flory and Stockmayer, but it is a major factor

in the structural development of dendritic and hyperbranched polymers 23, 25-28 The

method of moments has been extended to describe cycle formation in hyperbranched

polymers composed of AB2 monomers 25 and the AB2+B3 system 29. This extension is

enabled because in these systems, a maximum of one cycle is possible, at which point the

polymer cannot grow further. In contrast, in the A2+B3 system, there is no limit on the
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maximum number of cycles. Infinite series solutions have been developed to predict the

gel point in the A2+B3 system, but do not include additional effects such as unequal

reactivities of the groups in B3, and the effect of monofunctional reagents.2 °

As an alternative to mass action kinetic models that use concentration variables,

Monte Carlo simulations have been performed for hyperbranched polymers, so that more

realistic kinetics can be included and so that that structural information can be obtained.

For example, the Wiener index can be computed for each polymer in the simulation,

which is related to viscosity. 30 In the Monte Carlo simulations, individual monomers are

reacted with each other to build up the polymer, using random numbers to select each

event. Each monomer is tracked throughout the simulation, and information regarding its

connection to other monomers is stored. Monte Carlo simulations may be used to

describe only the connectivity of the polymers, without describing their spatial positions,

15,25,29,31 or lattice Monte Carlo simulations can be performed in which each monomer is

associated with a spatial position in the lattice.32  Direct comparison between

experimental data and Monte Carlo simulations has been limited to date, but these

simulations can be valuable in interpreting experimental results. 15' 25 As computational

resources grow, Monte Carlo simulations become an increasingly attractive alternative to

population balance modeling, since their major drawback has been the amount of

computation required.

Another modeling approach is to describe the structural development of

hyperbranched polymers using atomistically detailed algorithms. 2, 30 These studies are

limited to the growth of single polymers at a time because of the high computational cost,

so they are not as useful for predicting the molecular weight distribution. However, if the
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conformation of the polymer changes throughout the reaction and this strongly influences

the kinetics, then it may be necessary to include this level of detail.

Recent studies employ syntheses of hyperbranched polymers via A2+B3 both in a

solution7-9, 12 and also in the melt phase1' 33 with no solvent. Herein, we combine

experimental and computational efforts to understand the polymer structural development

in a melt, especially branching and the onset of gelation. The experimental data has been

published previously,' and this paper employs a Monte Carlo simulation to interpret the

experimental findings and to eludicate the underlying kinetics. In a previous study, we

used a simpler kinetic model to explore the role of cyclization in the drop-wise addition

of A2 into B3 in a solvent. 15 Herein we consider a similar statistical framework to explore

a wider range of phenomena, for a batch A2+B3 reaction in a melt. The Monte Carlo

simulations are used to interpret the experimentally measured number-averaged

molecular weight, weight-averaged molecular weight, and the density of branched units,

by considering the effects of the cyclization reactions, unequal reactivities, and end-

capping on the structure development of hyperbranched polymers.

II. Experimental

Highly branched poly(ether ester)s were synthesized in the melt phase using an

oligomeric A2 + B 3 polymerization strategy. Condensation of poly(propylene glycol) (A2

oligomer) and trimethyl 1,3,5-benzenetricarboxylate (B3 monomer) generated highly

branched structures. The conversion and degree of branching were measured with 'H

NMR spectroscopy, and the molecular weight (number-average, weight-average, and

polydispersity) was characterized using size exclusion chromatography (SEC), at six

points throughout the polymerization process. Additional experiments were also
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performed in which two different monofunctional endcapping reagents were added for

the purpose of delaying the gel point. This experimental work has been published

previously,' and should be consulted for further detail on the experimental procedures.

The present work interprets these experiments through a comparison with Monte Carlo

simulations, utilizing alternative assumptions and kinetic models. Because the error in

the SEC measurements is approximately 10%, our goal is not to achieve exact agreement

between the experiments and modeling, but to compare the trends and magnitudes.

III. Model and Simulations

This paper focuses on the use of a model to interpret the experimental data. Each

simulation starts with N monomers of A2 and N monomers of B 3 in the system, since the

monomers were polymerized with a 1:1 molar ratio during the experiments. At each step

in the simulation, all of the available (unreacted) functional groups are listed. Then,

using a random number, an A group and a B group are selected from the list and the

reaction is executed. This is followed by updating the list of available A and B groups,

molecular weights of the molecules, and the number of dendritic, linear and terminal

units in the system.

The probability of selecting a particular pair of A and B groups is proportional to

the reaction rate for that pair, which yields the correct time-evolution of the system.34

Therefore, a model is needed for the reaction rates of various events. The first effect that

is considered in this effort is the formation of cycles through intramolecular reactions.

Our polymerization was performed in the melt, which was hypothesized to minimize

cycle formation due to high concentration of reactants, so cyclization reactions are taken

into account in the simulations to address this hypothesis. While selecting an A group

7/26



Appendix B

Submitted to Macromolecules

(from A2 oligomers) and a B group (from B3 monomers) for reaction at each simulation

step, some pairs are favored more than the others. If the reaction of an A-B pair leads to

cycle formation, the selection probability of that particular pair is promoted by the

cyclization parameter y, such that y=(k/k)/N, where k. is the rate of cyclization

reactions for each A-B pair and kn is the rate of non-cyclization reactions for each A-B

pair. N appears in the parameter y since the number of intermolecular reactions in the

simulations grows as N2, while intramolecular reactions are initially proportional to N.

Although y is constant throughout each simulation, the overall number of cycle-forming

reactions increases with conversion, because the number of possible cycle-forming

reactions increases with molecular weight. We use different values of y in the

simulations to explore the effect of cycle formation on the resulting polymer.

In addition to cyclization and non-cyclization reactions, we also consider end-

capping reactions between E groups (from monofunctional end-capping reagents) and B

groups, with a rate constant of k. The ratio E = ke/knc is then the second parameter in our

kinetic model. In a second set of simulations, y and c have been varied to observe their

effects on the development of molecular characteristics such as number average

molecular weight (Mn), weight average molecular weight (Mw), polydispersity index

(PDI = Mw/Mn) and the fraction of dendritic units (fD). fD is calculated using: fD = D /

(D+T+L), where D, L and T indicate the number of dendritic, linear and terminal units in

the system. We plot fD in the simulation results (as opposed to fL or fT), since fD is the

quantity extracted from the 1 H NMR measurements.'

Depending on the properties of the monomers, such as their molar mass or

electrostatic interactions, unequal reactivities of their groups can also affect the structural
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development of hyperbranched polymers. End groups usually have higher reactivities

than the groups along the length of the chains because of the lower kinetic excluded

volume effect. 35 This would cause the linear units to have lower reactivities than the

terminal units. In order to simulate unequal reactivities of the B groups, we define a third

parameter p. For each unreacted B group in a B3 monomer, we check the reaction state

of the other two B groups in the monomer. We then consider three possible cases of

unequal reactivity. For this purpose, we define k, to be the rate of reaction of a B-group

in a free B 3 monomer, k 2 to be the rate of a B-group in a terminal unit, and k3 for a B-

group in a linear unit. We assign reaction rates in the ratio of p = k1/k2 = k2/k3. k, is

expected to be enhanced relative to k2 due to the greater mobility of the free B3 monomer

and its ability to diffuse through the polymer, while k 2 may be different from k3 due to

blocking, free volume, and electrostatic considerations. In order to isolate these two

effects, we have also performed simulations with P12 = kl/k 2 and k2 = k3, and then also

with P23 = k2/k3 and k, = k2.

For the simulation results presented in this study, the system size is N=10,000.

Smaller simulation sizes of N=1000, 3000, 5000, and 7000 have also been used. The

simulation results with N=1000 differ significantly from the simulations with larger N.

On the other hand, simulations with larger N agreed quantitatively. This suggests that the

trends reported in this study are not dependent on the system size. Additionally, for the

case of no cycle formation and equal B3 reactivity, we compared our weight-averaged

molecular weight with the analytical theory of Stockmayer, 19 and the error is

approximately 1%. Clearly, if one is interested in describing the approach to gelation

with no bound on the molecular weight, then the system size would also need to approach
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a macroscopic number of monomers (1023), and studies have been performed to quantify

this tradeoff.36 However, in these simulations, only molecular weights up to 500,000

g/mol are presented, since this is the range of the experimental data. Furthermore, the

error in the SEC measurements is approximately 10%, so an error of 1% in the model

predictions is not significant.

III. Results and Discussion

Monte Carlo simulations have been carried out in order to assess the effects of

cyclization, unequal reactivities, and end-capping reactions on the polymer structure

development. Molecular weights of A 2 (PPG-1000) and B3 (TMT) are 1060 and 252

g/mol, whereas the molecular weights of two types of end-capping reagents, PPG-M-

1000 and dodecanol, are 1200 g/mol and 187 g/mol, respectively. The simulation system

containing 10,000xlO,000 A 2 and B3 monomers yielded molecular weights in the same

range as those observed in the experiments. Similar to the experiments, simulations have

been initialized with an equal number of A 2 and B 3 monomers in the system. The

simulations results plotted are averages over 50 independent realizations.

a. Effects of cyclization reactions

The melt polymerization was previously considered to be sufficiently

concentrated so that the cycle formation would be negligible.' We first investigate the

extent of cyclization via the simulations. Extent of cyclization (EOC) is defined as the

fraction of reactions between A and B that is intramolecular, and is a quantity that has

been measured previously using MALDI-ToF for linear polymers but is less reliably

measured in hyperbranched polymers due to the many possible isomers. 14,37
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Figures 1(a) and 1(b) show the experimental' and simulated evolution of the

weight-average molecular weight Mw and the polydispersity PDI as a function of A 2

conversion, for the 10,000xl0,000 A2+B3 system with different y values. The reactivity

ratio p is 1 and no monofunctional reagents are present. For all y values, a slow increase

in Mw and PDI values was observed until about 80% A 2 conversion. Above 80% A 2

conversion, a sharp increase in Mw and PDI takes place in all the systems, except for the

one with the highest level of cyclization (' = 1). The experimental data for PDI and Mw

are most consistent with a value of y around 10-2. The ideal limit of no cycle formation,

modeled by Flory, is the solid curve with y = 0.

Mw and PDI development in systems with cyclization ratios in the range of y- 0

to 10-2 all agree reasonably well with the experimental data. Due to the variability of the

experimental measurements, the goal of the modeling is not to match the experiments

exactly, but to assess the magnitude of the various effects. The simulation with y = 101

has a lower Mw and PDI at high conversions, compared to the experimental data. This

suggested that the extent of cyclization, which is the fraction of reactions that are cycle

forming, was quite low during the experiment. Figure 2 shows that the system with y-

10-1 reaches an extent of cyclization of 0.09 at 90% A2 conversion. Interestingly, even

such a low extent of cyclization dramatically suppressed the Mw and PDI as illustrated in

Figures 1(a) and 1(b). Figure 2 also shows that with y = 10-3 or y = 10-2, the extent of

cyclization is less than 3%. This result supports the original hypothesis, that melt

polymerization would suppress the effect of cycle formation on molecular weight and

gelation.
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Another important characteristic of hyperbranched polymers is the fraction of

dendritic units fD, which is directly proportional to the extent of branching in the system.

The development of fD at different y levels is shown in Figure 1(c) as a function of A2

conversion. As y is increased from y, = 102 to )Y = 10-1, an increase in fD is observed at A2

conversions of 60% and above. This trend was expected, since cyclization reactions

enhance the number of dendritic groups via the formation of small, fully reacted

polymers with no free groups. However, the evolution of fD is not consistent with the

experimental data for any value of y. For all y, the simulations predict a higher fraction

of dendritic units.

b. Effects of unequal reactivities

The disagreement of fD between the experiments and simulations suggests that there is an

additional effect that suppresses the amount of branching during the experiments, other

than the effect of cyclization reactions. It could be attributed to the lower reactivity of

free B groups in linear units relative to the free B groups in the terminal units or

completely unreacted B 3 monomers. However, this would also reduce the molecular

weight. In order to assess this trade-off quantitatively, additional simulations have been

performed during which the reactivity of free B groups is modified, based on the overall

state of the B3 monomer. In these simulations presented in this section, y = 0 since the

previous section demonstrated that cyclization did not play a major role in this system.

Figure 3 shows the evolution of the simulations with different levels of reactivity

ratio p. With p = 1, the simulations are identical to those in Figure 1, while larger p

reduces the amount of branching and also the molecular weight and distribution. The

reduction in molecular weight was expected since the polymers are becoming more
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linear, but the reduction of molecular weight and polydispersity is not as dramatic as it is

with cyclization. Even for the extreme value of p = 10, gelation is delayed but not

completely suppressed. In Figure 3(c), the increase in p causes a decrease in fD, as

expected, but the shape of the curves does not match the experimental data. In the data,

the fraction of dendritic units rises quite high at late conversion, but is very low at earlier

conversions. The 1:1 molar ratio of A2 and B3 is important in understanding this

behavior. Due to the 1:1 molar ratio, there is an excess of B groups, so at full A

conversion, only 2/3 of the B groups have reacted. If the reactivity of the third B group is

strongly reduced, then there will be few dendritic units that form, but this is not observed

in the experiments. The fact that the experiments eventually reach a large value of fD

near that predicted with p = 1 instead suggests that a B group in a linear unit has a similar

reactivity to a B group in a terminal unit.

The low values of fD around 60% conversion are more consistent with a

suppression of the reaction of terminal units relative to free units, as shown in Figure 4

for various levels of P12. Recall that p12 = kl/k 2, with k2 = k3. The high reactivity of the

free B3 could be due to its mobility, as well as the fact that B groups in polymers may be

partially blocked by other portions of the polymer. This trend in fD is much more

consistent with the experimental data. A high value of P12 = 10 best matches the fD

measurements, while a somewhat lower value of P12 near 1.5 - 2 agrees best in the

molecular weight distribution. Our conclusion based on the simulations in Figures 3 and

4 is that a suppressed reactivity of the third B group in the linear unit is not consistent

with the observed data. The more consistent explanation is that the free B 3 monomers are

more mobile and therefore react faster than B 3 in polymer.
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c. Effects of end-capping reagents

The third and final simulation study considers the addition of monofunctional

reagents to the A2+B3 system. Stockmayer's theoretical studies of highly branched

polymers indicated that addition of a monofunctional end-capping reagent should shift

the gel point to higher monomer conversion values. 6 ' 8, 19 Thus, delaying the gel point by

terminating some of the B functionalities is the main motivation behind using end-

capping reagents in this system. A molar ratio of monomers as A2:B3:E = 1:1:1 was used

in the experiments to ensure that residual B end groups, which would be expected in an

A2:13 = 1:1 system at full A2 conversion, do not remain in the system at full conversion.

Figure 5 provides a comparison of the change in the evolution of Mw for the addition

of PPG-M-1000 (1200 g/mol) at the beginning of the reaction. The A conversion that is

plotted also includes the conversion of the end-capping reagent, since that is measured by

NMR. Curves are shown for the values of P12 considered previously in Figure 4. A

primary observation is that the addition of the end-capping reagents has the larger effect

when the reactivity ratio is also large. Furthermore, this effect is only observed when the

end-capping reagents also have a higher reactivity than the A groups in A2 ( >> 1). This

might be the case for the dodecanol reagent, if the end-capping reagent has a higher

diffusivity than the A2 due to its lower molar mass.

In the simulations presented in Figures 5 and 6, we set c = 1000, although the results

are similar for E = 10. When ez 1, the simulations predict that the end-capping reagents

have a negligible effect on the polymer structure. By reacting with the excess B groups,

they only add their extra mass to the polymer. In the opposite limit, when c >> I and P12
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>> 1, the E groups react quickly with the free B3 monomers, after which the EB 3 units

begin reacting with A2. Each B 3 is thus bonded to only two A2 monomers, so the

polymers have a linear structure.

In the experiments, it was observed that the gel point was completely suppressed

up to 98% conversion of each monomer, and the measured g' contraction factor from

GPC was more consistent with a highly branched polymer (large fD). Our simulations do

predict a suppression of molecular weight with the end-capping reagents, but gelation is

only delayed and not completely suppressed. At the extreme value P12 = 10, a significant

reduction in fD is also implied, but at lower values of p12, high levels of branching are still

predicted.

In the presentation of the experimental results,' we suggested that ester

interchange of the A2 with the monofunctional reagents might account for the observed

reduction in molecular weight. While this interchange would cause a randomization of

the polymer, at the high conversion of 98% it does not provide a consistent explanation

for the extreme reduction in molecular weight. At 98% conversion, most of the A2

monomers freed up by ester interchange would have reacted with another B 3 monomer.

Other effects not included in the model could be causing the suppression of

gelation observed in the experiments, such as the spatial distribution of the monomers in

the polymer. These effects could be exacerbated when the end-capping reagents are

added, since all B groups must eventually react, even those buried or blocked in the

center of the spherical polymer. Possibly, at high conversion, such groups are more

likely to undergo cyclization reactions, which would suppress the molecular weight.
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An alternative explanation was also suggested by our simulations. We observed that the

simulation results are extremely sensitive to the stoichiometry near A2:B3:E = 1:1:1. In

particular, if there is a reduction in the amount of B3, then not all of the A2 groups will be

able to react with B groups, and the molecular weight will be reduced. This may be a

particular issue in our experiments, since B3 loss may be facilitated by the nitrogen purge

at our final polymerization temperature of 180 °C. Due to the uncertainty in our final

stoichiometry measurements it is not possible to eliminate this effect. The simulations

suggest that that our chosen stoichiometry of 1:1: 1 is not a robust operating point, due to

the extreme sensitivity of the molecular weight on the stoichiometry. Figure 6 shows a

comparison of the simulations with A2:B3:E = 1:1:1 and with 1:0.9:1. At this

stoichiometry, 90% A2 conversion is the maximum that can be achieved, and gelation is

completely suppressed at full B3 conversion.

4. Conclusions

The formation of highly branched poly (ether ester)s by the melt condensation of

an A2 oligomer with a B3 monomer has been studied using experiments and kinetic

Monte Carlo simulations. The simulations demonstrated that unequal reactivities can

play an important role in the structure development of hyperbranched polymers, even

when it has a little impact on the molecular weight. The results also indicate that the

presence of end-capping reagents delays the gel point. However, the effect of end-

capping agents also depends strongly on the ratios of the various monomers and their

reactivity ratios. These results are motivating our further study of the role of end-capping

reagents in the A2 + B 3 system. In summary, the kinetic Monte Carlo simulations provide

a tool for quantitatively assessing the effects of simple reaction mechanisms on molecular
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structure evolution, enabling the consideration of a broader range of mechanisms than

with analytical models.
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Figure 1. Comparison of simulation and experiment' (*). In the simulations, the

cyclization ratio y is varied: y = 0 (solid line), y = 10-3 (dashed line), y = 10-2 (dotted line),

y = 10-1 (dashed-dot line). (a) Weight-average molecular weight Mw (b) Polydispersity

index PDI (c) Fraction of dendritic units fD. Agreement between experiments and

simulations is not achieved for fD at any value of y.
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Figure 2. Simulation predictions of extent of cyclization. The cyclization ratio y is

varied: y = 10-3 (dashed line), y = 10.2 (dotted line), y = 10l (dashed-dot line). For the y =

0 case, EOC = 0.
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Figure 3. Comparison of simulation and experimentt (*). In the simulations, p kl/k2

k2/k3. p = 1 (solid line), p = 1.5 (dashed line), p = 2 (dotted line), p = 10 (dashed-dot

line). (a) Weight-averaged molecular weight (b) polydispersity index (c) fraction of

dendritic units.
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Figure 4. Comparison of simulation and experiment' (*). In the simulations, P12 k,/k 2

and k2 = k3. P12 = I (solid line), P12 = 1.5 (dashed line), P12 = 2 (dotted line), P12 = 10

(dashed-dot line). (a) Weight-averaged molecular weight (b) polydispersity index (c)

fraction of dendritic units.
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Figure 5. Simulated evolution with end-capping reagents added at the beginning of the

process, with A2:B3:E = 1:1:1. The molecular weight of E (PPG-M-1000) is Mwcap =

1200 g/mol. As in Figure 4, P12 = k1/k2 and k2 = k3 . P12 = 1 (solid line), P12 = 1.5 (dashed

line), p12 = 2 (dotted line), p12 = 10 (dashed-dot line). (a) Weight-averaged molecular

weight (b) polydispersity index (c) fraction of dendritic units. (Note: Dendritic units are

calculated here based on the number of A-B reactions. E-B reactions are not considered

in the calculation since they do not lead to further branching.)
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Figure 6. Simulated evolution with end-capping reagents added at the beginning of the

process, with variation in stochiometry: A2:B3:E = 1:1:1 (solid line), A2:B3:E = 1:0.9:1

(dotted line with markers). The molecular weight of E (PPG-M-1000) is Mwcp = 1200

g/mol. P12 = kl/k 2 = 1.5 and k2 = k3 . (a) Weight-averaged molecular weight (b)

polydispersity index (c) fraction of dendric units.
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